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Abstract If P is a differential operator with constant coefficients, an identity is
derived to calculate the action of eP on the product of two functions. In many-body
theory, P describes the interaction Hamiltonian and the identity yields a hierarchy
of Green functions. The identity is first derived for scalar fields and the standard
hierarchy is recovered. Then the case of fermions is considered and the identity is
used to calculate the generating function for the Green functions of an electron system
in a time-dependent external potential.

Keywords 81V70 (Many-body theory) · 16W30 (Coalgebras, bialgebras,
Hopf algebras) · 13N05 derivations

1 Introduction

In spite of immense progress in the calculation of the properties of materials, some
of them are still beyond our computational power. Systems containing both localized
and delocalized electrons often belong to these hard problems. A particularly conspi-
cuous example is the optical spectrum of molecules and solids containing transition
metals. Brute force calculations involving a large number of configurations do not give
satisfactory results for the colour of such familiar materials as blood [1] or grass [2].
In the solid state, non-perturbative Green function methods using the Bethe-Salpeter
equation proved accurate for the colour of semiconductors [3–5] but not for transi-
tion metal compounds. On the other hand, the very simple ligand field formalism can
be used to calculate the position of the spectral lines [6], but not their intensities.
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The success of non-perturbative Green function methods for semiconductors and of
ligand field theory for the spectral line position makes it desirable to unify the Green
function and the ligand field theories. The present paper describes a tool developed
for this unification.

The main assumption of the Green function theory is that the eigenstate of the
interacting system can be obtained as the adiabatic evolution of the ground state of
the non-interacting system and that the latter can be written as a Slater determinant.
A similar assumption is present in the Kohn-Sham approach to the density functional
theory. On the contrary, the effectiveness of the ligand field approach comes from the
fact that several initial states are taken into account. The ground state of the interacting
system is then obtained by diagonalising an effective Hamiltonian representing the
effect of the electron–electron interaction on these initial states [7]. The starting point
of our unification is therefore to use non-perturbative Green function methods to set
up an effective Hamiltonian for a small number of initial states. The standard Green
function method is recovered when the number of initial states is one, the ligand field
method is obtained as the first approximation of a hierarchy of equations for the Green
functions [8].

To develop this theory, we used a mathematical tool initiated by Schwinger [9] and
that was taken up by a few authors [10–12]. This approach is known as the theory of
Green functions for open shells [13] and its development was rather slow because its
combinatorial complexity is much larger than in the usual many-body theory. From a
graphical point of view, the complexity comes from the fact that the Feynman diagrams
must be drawn not only with the usual two-leg Feynman propagator but also with
2k-leg “propagators” where k goes from 1 to the number of initial states. These many-
leg propagators describe the correlation between initial states. It turns out that quantum
group methods are well suited to tame this complexity and help deriving an identity
that yields a hierarchy of Green functions for open shells [14]. More precisely, if P is
a differential operator with constant coefficients, the identity gives a closed formula
for the action of eP on the product of two functions f g.

For motivation, we show how this identity is used in many-body theory. The Green
functions G(x1, . . . , xn) of an interacting system can be obtained from a generating
function Z( j) by functional derivatives with respect to the external source j (x) ([15]
p. 212)

G(x1, . . . , xn) = in

Z

δn Z

δ j (x1) . . . δ j (xn)
.

Therefore, in principle, Z( j) provides a complete information on the system. The
generating function Z( j) is usually given by an equation of the type Z( j) = eP eW 0

,
where P is a polynomial in δ/δ j (x) (the functional derivative with respect to the
external source) and W 0 is a polynomial in j . In standard (i.e. closed shell) Green
function theory, W 0 is bilinear in j :

W 0 = i

2

∫
dxdy j (x)G0(x, y) j (y),
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where G0(x, y) is the Green function of the non-interacting system. For the Green
functions of open shells, the function W 0( j) is a polynomial in j of degree larger
than 2. This polynomial describes the initial state of the non-interacting system [16].
When we take the functional derivative of Z( j) with respect to j (x) and we denote
δZ( j)/δ j (x) by Z ′( j), we find

Z ′( j) = δ

δ j (x)

(
eP eW 0

)
= eP

(
δeW 0

δ j (x)

)
= eP

(
W ′

0eW 0
)
,

where W ′
0 = δW 0( j)/δ j (x). The expression eP is an infinite sum of differential opera-

tors Pn/n! acting on the product W ′
0eW 0

. The role of the identity is to transform it into a

finite sum of differential operators acting on eP eW 0 = Z( j). In other words, we obtain
a non-trivial expression relating Z ′( j) to a differential operator D acting on Z( j). This
is indeed a hierarchy of Green functions, i.e. a relation between the one-point inter-
acting Green function Z ′( j) and some n-point interacting Green functions generated
by DZ( j). Such a hierarchy is important because it provides non-perturbative equa-
tions that can be used to derive non-perturbative approximations [14]. In Ref. [14], the
identity was given without proof and no detail was given to explain how the hierarchy
follows from the identity. The purpose of the present paper is to fill this gap by proving
the main identity and by deriving in detail some of its applications.

The plan of the paper is as follows. After this introduction we show that the action
of a differential operator P on a product of two functions f g can be described by
a mathematical concept called a coproduct. Then we derive our main result which
provides a way to calculate eP ( f g). As a simple application of the basic identity,
we derive the hierarchy of Green functions for standard quantum field theory of the
scalar field. We also describe the changes that are required when we consider fermions
instead of bosons. As an application, we derive in detail the generating function Z in
the presence of an external time-dependent potential. We conclude with some possible
extensions of the basic identity to non-commutative algebras.

2 The coproduct of a differential operator

In this section we introduce the coproduct of a differential operator with constant
coefficients. We start with the case of a one-dimensional problem and generalize it
to the d-dimensional case. But first, we define the tensor product of functions and of
differential operators, that will be crucial for the definition of the coproduct.

2.1 Tensor product

If f and g are functions of a variable x , the tensor product of f and g, denoted by
f ⊗ g, is a function of two variable defined by ( f ⊗ g)(x, y) = f (x)g(y). From this
definition, it follows that the tensor product is linear: for any complex number λ and for
any functions f , g and h we have f ⊗(g+h) = f ⊗g+ f ⊗h, ( f +g)⊗h = f ⊗h+g⊗h
and λ( f ⊗ g) = (λ f ) ⊗ g = f ⊗ (λg). Moreover, we can multiply the two tensor
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products f ⊗ g and f ′ ⊗ g′ by the rule ( f ⊗ g)( f ′ ⊗ g′) = ( f f ′) ⊗ (gg′), where
( f f ′)(x) = f (x) f ′(x) and (gg′)(y) = g(y)g′(y).

If the variable x runs over a d-dimensional space, we call differential operator a
finite sum

P =
∑

n1,...,nd

an1...nd

∂n1

∂xn1
1

· · · ∂
nd

∂xnd
d

,

where an1...nd are complex numbers. If P and Q are differential operators acting on
functions of x , the tensor product of P and Q, denoted by P ⊗ Q is the operator acting
on the tensor product of two functions f ⊗ g by

(P ⊗ Q)( f ⊗ g)(x, y) = ((P f )⊗ (Qg)) (x, y) = (P f )(x)(Qg)(y).

With this definition, it can be checked that the tensor product of differential operators
is linear and that we can define the multiplication of tensor products of operators
by (P ⊗ Q)(R ⊗ S) = (P R) ⊗ (QS). The tensor product is a familiar object in
quantum physics to define an operator acting on a many-body state. For instance, if
L is the angular momentum acting on a single particle, the angular momentum acting
on two-particle wavefunctions is defined as L ⊗ 1 + 1 ⊗ L .

2.2 The one-dimensional case

If ∂ = d/dx , the action of ∂n on the product of two functions of x is given by the
Leibniz identity

∂n( f g) =
n∑

k = 0

(
n
k

)
(∂k f )(∂n−k g).

In this definition, the functions f and g are not really important and look more like
dummy arguments. The coproduct is a way to calculate ∂n( f g) without mentioning
f and g. The coproduct is denoted by � and defined by

�∂n =
n∑

k = 0

(
n
k

)
∂k ⊗ ∂n−k .

For example

�1 = 1 ⊗ 1,

�∂ = ∂ ⊗ 1 + 1 ⊗ ∂,

�∂2 = ∂2 ⊗ 1 + 2∂ ⊗ ∂ + 1 ⊗ ∂2.
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More precisely, the relation between the coproduct and the derivative of f g is given
by

∂n( f g)(x) = (�∂n)( f ⊗ g)(x, x).

At this stage, we need to define more accurately the algebraic structure we are using.
Let A be the algebra of differential operators with constant coefficients (i.e. the algebra
of polynomials in the variable ∂). Thus P ∈ A if and only if there is a finite number
of complex numbers an such that P = ∑

n≥0 an∂
n . The product in A is the usual

product of polynomials: if P = ∑
n≥0 an∂

n and Q = ∑
m≥0 bm∂

m then P Q =∑
n,m≥0 anbm∂

n+m . Thus, A is a unitary commutative algebra. The coproduct appears
when the differential operators act on a product of two functions. It is a linear map
� : A → A⊗A whose action on an element P ∈ A can be written�P = ∑

i Ri ⊗Si ,
so that P( f g) = ∑

i (Ri f )(Si g). For example, for P = ∂2 the coproduct is a sum of
three terms described by R1 = ∂2, S1 = 1, R2 = 2∂ , S2 = ∂ and R3 = 1, S3 = ∂2

(note that, by linearity of the tensor product, we can also choose R2 = ∂ , S2 = 2∂).
In general, we can use

P( f g) =
∑
n ≥ 0

an

n∑
k = 0

(
n
k

)
(∂k f )(∂n−k g),

to get

�P =
∑
n ≥ 0

an

n∑
k = 0

(
n
k

)
∂k ⊗ ∂n−k . (1)

In other words, the coproduct is just a way to denote which differential operators act on
f and on g in P( f g). The introduction of such a concept may look rather pedantic at
this stage, but it will allow us to obtain very general results, valid for partial derivatives
and even for functional derivatives. Note that the kth derivative of ∂n with respect to
∂ is n!∂n−k/(n − k)! for n ≥ k and 0 for n < k, so that

�P =
∑
k ≥ 0

∂k

k! ⊗ P(k), (2)

where P(k) is the kth derivative of P with respect to ∂ . The concept of a coproduct
is unfamiliar, but it is very useful in quantum theory. For instance, it was needed to
calculate matrix elements of many-body operators and density correlations [16]. In
this paper we shall see that it is also quite useful to derive non-perturbative equations
in Green function theory. We hope that the example of the coproduct of a differential
operator makes this concept understandable. For convenience, we shall replace the
notation �P = ∑

i Ri ⊗ Si by Sweedler’s notation �P = ∑
P (1) ⊗ P (2), which is

more common.
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2.3 The d-dimensional case

In the d-dimensional case, we put ∂i = ∂/∂xi and we define the coproduct of
D = ∏d

i=1 ∂
ni
i as

�D =
n1∑

k1 = 0

· · ·
nd∑

kd = 0

(
n1
k1

)
· · ·

(
nd

kd

)
∂

k1
1 . . . ∂

kd
d ⊗ ∂

n1−k1
1 . . . ∂

nd−kd
d .

We can even define the coproduct of an infinite dimensional differential operator.
If r1, . . . , rp are p points, the coproduct of the functional differential operator

D = δn1+···+n p

δ j (r1)n1 . . . δ j (rp)
n p

= δn1

δ j (r1)n1
· · · δn p

δ j (rp)
n p

is defined by

�D =
n1∑

k1=0

· · ·
n p∑

kp=0

(
n1
k1

)
· · ·

(
n p

kp

)

× δk1+···+kp

δ j (r1)k1 . . . δ j (rp)
kp

⊗ δn1−k1+···+n p−kp

δ j (r1)n1−k1 . . . δ j (rp)
n p−kp

.

2.4 Algebra morphism

Up to now, the coproduct is just a linear map from A to A⊗A. The coproduct becomes a
powerful tool if it has a property called algebra morphism. The coproduct is an algebra
morphism if�1 = 1 ⊗ 1 and, for any P and Q in A,�(P Q) = (�P)(�Q) or, more
explicitly

�(P Q) =
∑

(P Q)(1) ⊗ (P Q)(2) =
∑

(P (1)Q(1))⊗ (P (2)Q(2))

=
(∑

P (1) ⊗ P (2)

) (∑
Q(1) ⊗ Q(2)

)
.

To show that the coproduct of the algebra of differential operators is an algebra
morphism, we consider for notational convenience the one-dimensional case. If we
take P = ∂n and Q = ∂m , then P Q = ∂n+m and

�(P Q) =
m+n∑
i=0

(
n + m
i

)
∂ i ⊗ ∂n+m−i =

n∑
k=0

m∑
l=0

(
n
k

)(
m
l

)
∂k+l ⊗ ∂n+m−k−l

=
(

n∑
k=0

(
n
k

)
∂k ⊗ ∂n−k

) (
m∑

l=0

(
m
l

)
∂ l ⊗ ∂m−l

)
= (�P)(�Q),
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where we used the Vandermonde convolution formula
∑

k+l=i

(
n
k

)(
m
l

)
=

(
n + m
i

)
.

The d-dimensional case is proved similarly.

2.5 Reduced coproduct

For any element P of A, the reduced coproduct of P is defined by

�P = �P − P ⊗ 1 − 1 ⊗ P.

For example: �∂ = 0, �∂2 = 2∂ ⊗ ∂ ,

�∂n =
n−1∑
k=1

(
n
k

)
∂k ⊗ ∂n−k,

for n > 1. We denote the reduced coproduct of P by �P = ∑
P (1) ⊗ P (2). If the

polynomial P is such that P(0) = 0, its coproduct �P contains the terms P ⊗ 1 and
1 ⊗ P . The purpose of the reduced coproduct is to eliminate these terms. As a result
of this operation, the degree of P (1) and P (2) is always greater than 0 and smaller than
the degree of P .

3 The main identity

In this section, we prove the identity from which we can derive, among other things,
the hierarchy of Green functions. Although this identity provides a powerful method
to resum infinities of Feynman diagrams of the perturbation theory, its proof is very
simple.

Proposition 3.1 If A is a commutative algebra equipped with a coproduct � that is
an algebra morphism and if P ∈ A then

�(eP ) = e�P
(

eP ⊗ eP
)
, (3)

where �P = �P − P ⊗ 1 − 1 ⊗ P and

e�P = 1 ⊗ 1 +
∞∑

n=1

1

n! (�P)n = 1 ⊗ 1 +
∞∑

n=1

1

n!
(∑

P (1) ⊗ P (2)

)n

Proof By linearity of the coproduct, we have

�(eP ) = �

( ∞∑
n=0

1

n! Pn

)
=

∞∑
n=0

1

n!�(P
n) =

∞∑
n=0

1

n! (�P)n = e�P ,
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where we used the fact that � is an algebra morphism to write �(Pn) = (�P)n .
In e�P , the operator M = �P is considered as a linear operator from A⊗A to A⊗A
defined by M(Q ⊗ R) = ∑

(P (1)Q) ⊗ (P (2)R). We decompose this operator M as
M = �P + P ⊗ 1 + 1 ⊗ P and we use the fact that the algebra A is commutative to
write

eM = e�P+P⊗1+1⊗P = e�P eP⊗1e1⊗P .

The proof is completed by noting that

eP⊗1 =
∞∑

n=0

1

n! (P ⊗ 1)n =
∞∑

n=0

1

n! Pn ⊗ 1 = eP ⊗ 1.

Similarly, e1⊗P = 1 ⊗ eP , so that eP⊗1e1⊗P = (eP ⊗ 1)(1 ⊗ eP ) = eP ⊗ eP . ��

Note that � is not an algebra morphism so that (�P)n 	= �(Pn). Thus, we will
use a special notation to write the terms of (�P)n . Namely,

(�P)n =
∑

Pn
(1′) ⊗ Pn

(2′).

With this notation, we can write the action of eP on the product of two functions as

eP ( f g) = (eP f )(eP g)+
∞∑

n=1

1

n!
∑

(Pn
(1′)e

P f )(Pn
(2′)e

P g). (4)

4 Applications

We consider now some applications of the identity (4) of increasing complexity. The
first application is a simple proof that ea∂ f (x) = f (x + a), the second is a hierarchy
of Green functions for closed shells.

4.1 The shift operator

For this very simple application, assume that you do not know Taylor’s theorem and
that you want to evaluate ea∂ f (x) for an entire function f . To prove that ea∂ f (x) =
f (x + a) it is enough to show that ea∂ xn = (x + a)n . The proof will be recursive. For
n = 1, ∂0x = x , ∂1x = 1 and ∂k x = 0 for k > 1. Thus, ea∂ x = (1 + a∂)x = x + a.
Now take n > 1 and P = a∂ . We have �P = P ⊗ 1 + 1 ⊗ P , so that �P = 0 and
the identity (4) gives us eP ( f g) = (eP f )(eP g). Therefore, taking f (x) = xn−1 and
g(x) = x we have eP (xn) = (eP xn−1)(eP x). The recursion hypothesis tells us that
eP xk = (x + a)k for all k < n, thus eP (xn) = (x + a)n−1(x + a) = (x + a)n .
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4.2 The standard hierarchy

In the quantum theory of the scalar field, the system is described by the action A(ϕ) =
A0(ϕ)− V (ϕ), with

A0(ϕ) = 1

2

∫
dx∂µϕ(x)∂

µϕ(x)− m2ϕ2(x),

and V (ϕ) = ∫
dx F(ϕ(x)), where F(ϕ(x)) is a polynomial such that F(0) = F ′(0) =

0 (usually ϕ3(x)/3! or ϕ4(x)/4!). The generating function of the Green functions of
this theory can be obtained from the following formula (see [15] p. 445)

Z( j) = e−iV (−iδ j )e
i
2

∫
dxdy j (x)G0(x,y) j (y),

where δ j is a short notation for the functional derivative δ/δ j (x), and where G0(x, y)
is the Green function of the free scalar field.

A hierarchy of Green functions is an exact relation between interacting Green
functions. To obtain it, we first take the functional derivative of Z( j) with respect to
j (x):

δZ( j)

δ j (x)
= e−iV (−iδ j )

δ

δ j (x)
e

i
2

∫
dzdz′ j (z)G0(z,z′) j (z′)

= ie−iV (−iδ j )

(∫
dyG0(x, y) j (y)e

i
2

∫
dzdz′ j (z)G0(z,z′) j (z′)

)
.

Now we use Eq. 4 with f = ∫
dyG0(x, y) j (y), g = e

i
2

∫
dzdz′ j (z)G0(z,z′) j (z′) and

P = −iV (−iδ j ). We first calculate (eP f ) = e−iV (−iδ j )
∫

dyG0(x, y) j (y). From
the fact that F(0) = F ′(0) = 0, we see that no terms of F has a degree smaller than 2.
Therefore, V (−iδ j )

∫
dyG0(x, y) j (y) = 0 because

∫
dyG0(x, y) j (y) is of degree 1

in j (x). This gives us

e−iV (−iδ j )

∫
dyG0(x, y) j (y) =

∫
dyG0(x, y) j (y).

Now we calculate the reduced coproduct �V . If F(ϕ(x)) is a polynomial in ϕ(x),
F(−iδ j ) is a polynomial in δ j . Thus

�V =
∫

dy
∑
k≥0

1

k!δ
k
j (y) ⊗ ∂k F

∂δk
j (y)

=
∫

dy
∑
k≥0

(−i)k

k! δk
j (y) ⊗ F (k)(−iδ j (y)).

Therefore,

�V =
∫

dy
∑
k≥1

(−i)k

k! δk
j (y) ⊗ F (k)(−iδ j (y))− V ⊗ 1.
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The term n = 1 of the main identity (4) becomes

∫
dy

∑
k≥1

(−i)k

k!
(
δk

j (y) f
) (

F (k)(−iδ j (y))e
P g

)
− (V f )(eP g).

The fact that f = ∫
dyG0(x, y) j (y) is of degree 1 in j implies that only the term

k = 1 may give a non-zero contribution. Its value is

∫
dy(−i)

(
δ j (y) f

) (
F ′(−iδ j (y))e

P g
)

= −i
∫

dyG0(x, y)F ′(−iδ j (y))Z( j).

Moreover, all terms coming from (�V )n with n > 1 in the main identity (4) give no
contribution because they are of degree at least n in δ j . This gives us the simple result

δZ( j)

δ j (x)
= i

∫
dyG0(x, y) j (y)Z( j)− i

∫
dyG0(x, y)F ′(−iδ j (y))Z( j). (5)

If we multiply this equation by (� + m2) we get the standard hierarchy (see [15]
p. 447)

(� + m2)
δZ( j)

δ j (x)
= i j (x)Z( j)− i F ′(−iδ j (x))Z( j), (6)

which is usually obtained by path-integral methods. However, note that equation (6)
does not imply equation (5) but

δZ( j)

δ j (x)
= i

∫
dyG0(x, y) j (y)Z( j)− i

∫
dyG0(x, y)F ′(−iδ j (y))Z( j)+ φ(x),

where φ(x) is a solution of the scalar wave equation (� + m2)φ(x) = 0. Thus, Eq. 5
is a result stronger than (6).

5 The fermionic case

For applications to molecular or solid-state physics, we need to modify the equations
to treat the case of fermions. The main difference with the previous case is in the
definition of the tensor product.

5.1 Tensor product

The basic variables of the fermionic theories are the field operators ψ(x) and ψ†(x)
and the fermionic sources η(x) and η̄(x). These variables are assumed to anticommute:
for example η(x)ψ(y) = −ψ(y)η(x).

The functions f will be polynomials in these basic variables. If f is a monomial in
the basic variables, we denote by deg( f ) the degree of f . For example, if f is a basic
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variable, deg( f ) = 1. For f = ψ†(r)ψ(r), deg( f ) = 2; for f = ∫
η̄(x)ψ(x)dx ,

deg( f ) = 2. The parity of a function f , denoted by | f |, is 0 if deg( f ) is even and is
1 if deg( f ) is odd. Moreover, a function f is said to be even if | f | = 0 and odd if
| f | = 1. From the anticommutation of the basic variables, one can derive the following
commutation relation of two functions f and g: g f = (−1)| f ||g| f g. Therefore, an
even function commutes with all functions and two odd functions anticommute.

The differential operators are products of functional derivatives with respect to η
or η̄. The basic relations are

δ

δη(x)
η(y) = δ(x − y),

δ

δη(x)
η̄(y) = 0,

δ

δη̄(x)
η̄(y) = δ(x − y),

δ

δη̄(x)
η(y) = 0.

If f and g are functions in the basic variable with a definite parity, then the functional
derivative of the product f g is given by the modified Leibniz formula

δ

δη(x)
( f g) = δ f

δη(x)
g + (−1)| f | f

δg

δη(x)
, (7)

and the same equation for a functional derivative with respect to η̄(x). Equation (7) is
known as Leibniz’ rule.

The sources η and η̄ anticommute, so the functional derivatives anticommute:

δ2

δη(x)δη(y)
= − δ2

δη(y)δη(x)
.

The degree of a monomial P in δ/δη(x) and δ/δη̄(x) is denoted by deg(P) and the
parity of P , denoted by |P| is 0 if deg(P) is even and 1 if deg(P) is odd. The action
of a differential operator on a product of two functions is given by

P( f g) =
∑

(−1)| f ||P(2)|(P (1) f )(P (2)g),

where the coproduct of terms of degree 1 is

�
δ

δη(x)
= δ

δη(x)
⊗ 1 + 1 ⊗ δ

δη(x)
,

�
δ

δη̄(x)
= δ

δη̄(x)
⊗ 1 + 1 ⊗ δ

δη̄(x)
,

and the coproduct of a product of two monomials P and Q is calculated from the
coproduct of P and Q by using the fact that the coproduct is an algebra morphism:

�(P Q) = (�P)(�Q) =
∑

(−1)|P(2)||Q(1)|(P (1)Q(1))⊗ (P (2)Q(2)), (8)
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where we have used the fact that the multiplication of P ⊗ Q by R ⊗ S is (−1)|Q||R|
(P R)⊗ (QS).

5.2 The main identity

With the conventions described in the last paragraph, the main identity (3) is valid
without change for fermionic sources if P is even (i.e. if |P| = 0). The action on a
product of two functions is now

eP ( f g) = (eP f )(eP g)+
∞∑

n=1

1

n!
∑

(−1)
| f ||Pn

(2′)|
(

Pn
(1′)(e

P f )
) (

Pn
(2′)(e

P g)
)
. (9)

6 Application of the fermionic formula

The main application of the fermionic formula was the derivation of the hierarchy of
Green functions for open shells [14]. It would be too long to give a detailed derivation of
this hierarchy. So we consider the calculation of the generating function Z of the Green
functions for a system in a time-dependent external potential. This generating function
is useful in time-dependent density functional theory. We first describe some properties
of fermionic sources, then we give the step by step derivation of the dependence of Z
on η and η̄, using the main identity. Finally, we use this identity again to obtain the
exact expression of Z .

6.1 Fermion sources

The S-matrix of a fermionic system with external sources η and η̄ and action Aint is

S(η̄, η) = T exp

(
−iAint + i

∫
η̄(x)ψ(x)dx + i

∫
ψ†(x)η(x)dx

)
.

For a nonrelativistic fermion, ψ(x) and ψ†(x) have a spin index. Thus, the sources
are also two-component vectors and

η̄(x)ψ(x) =
2∑

s=1

η̄s(x)ψs(x), ψ†(x)η(x) =
2∑

s=1

ψ†
s (x)ηs(x).

To see how functional derivatives act with respect to the time-ordering operator,
we first notice that the sources can be taken out of the time-ordering operator. For
example, if x0 > y0

T (η̄(x)ψ(x)ψ†(y)η(y)) = η̄(x)ψ(x)ψ†(y)η(y) = η̄(x)η(y)ψ(x)ψ†(y)

= η̄(x)η(y)T (ψ(x)ψ†(y)),
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if x0 < y0

T (η̄(x)ψ(x)ψ†(y)η(y)) = ψ†(y)η(y)η̄(x)ψ(x) = −η̄(x)η(y)ψ†(y)ψ(x)

= η̄(x)η(y)T (ψ(x)ψ†(y)).

Thus, the functional derivative with respect to η(x) or η̄(x) commutes with the time-
ordering operator. In particular [15]

δS(η̄, η)

δη̄(x)
|η̄=η=0 = iT

(
ψ(x)e−iAint

)
,

δS(η̄, η)

δη(x)
|η̄=η=0 = −iT

(
ψ†(x)e−iAint

)
,

where the minus sign in the last equation comes from the fact that the functional
derivative must jump over ψ†(x) to reach η(x) in the definition of S(η̄, η).

A standard result of the functional derivative approach [15,17] is that the interacting
S-matrix S(η̄, η) can be obtained from the non-interacting S-matrix

S0(η̄, η) = T exp

(
i
∫
η̄(x)ψ(x)+ ψ†(x)η(x)dx

)

by the equation

S(η̄, η) = exp

(
−i

∫
H int(

−iδ

δη̄(x)
,

iδ

δη(x)
)dx

)
S0(η̄, η),

where H int(ψ(r, t), ψ†(r, t)) is the interaction Hamiltonian.
If |	0〉 is a non-degenerate eigenstate of H0, the Green functions of the interacting

system can be obtained from the generating function

Z(η̄, η) = 〈	0|S(η̄, η)|	0〉 = exp

(
−i

∫
H int(

−iδ

δη̄(x)
,

iδ

δη(x)
)dx

)
Z0(η̄, η),

where Z0 = 〈	0|S0|	0〉. If |	0〉 can be written as a Slater determinant, |	0〉 =
b†

iN
. . . b†

i1
|0〉, where b†

n is the creation operator of the one-electron state un(x) of the
free Hamiltonian, we have [16]

Z0(η̄, η) = 〈	0|T exp

(
i
∫
η̄(x)ψ(x)+ ψ†(x)η(x)dx

)
|	0〉

= e−i
∫
η̄(x)G0(x,y)η(y)dxdy,
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where

G0(x, y) = −i〈	0|T
(
ψ(x)ψ†(y)

)
|	0〉 = −i〈0|T

(
ψ(x)ψ†(y)

)
|0〉

+ i
N∑

k=1

uik (x)u
∗
ik
(y).

As a useful example, we consider the interaction with an external time-dependent
potential v(x) so that Aint = ∫

dxψ†(x)v(x)ψ(x). The generating function becomes

Z = eP eW 0
, where

P = −i
∫

dxv(x)
δ2

δη(x)δη̄(x)
,

W 0 = −i
∫
η̄(x)G0(x, y)η(y)dxdy.

Our purpose is now to calculate Z .

6.2 Dependence of Z on η and η̄

For later convenience, we consider Z(λ) = eP eλW 0
. We first calculate the derivative

of Z(λ) with respect to η̄(x).

δZ(λ)

δη̄(x)
= eP

(
δeλW 0

δη̄(x)

)
=λeP

(
δW 0

δη̄(x)
eλW 0

)
= − iλeP

(∫
G0(x, y)η(y)dyeλW 0

)
.

We can apply identity (9) with f = ∫
G0(x, y)η(y)dy, so that | f | = 1 and g = eλW 0

.
We first note that P f = 0 because f does not contain any factor η̄. Thus eP f = f
and since eP g = Z(λ), Eq. 9 becomes

δZ(λ)

δη̄(x)
= −iλ f Z(λ)− iλ

∞∑
n=1

1

n!
∑

(−1)
|Pn
(2′)|

(
Pn
(1′) f

) (
Pn
(2′)Z(λ)

)
.

To proceed, we must calculate the reduced coproduct of P . We first have the coproduct

�P = P ⊗ 1 + 1 ⊗ P − i
∫

dzv(z)
δ

δη(z)
⊗ δ

δη̄(z)
+ i

∫
dzv(z)

δ

δη̄(z)
⊗ δ

δη(z)
,

so that

�P = −i
∫

dzv(z)
δ

δη(z)
⊗ δ

δη̄(z)
+ i

∫
dzv(z)

δ

δη̄(z)
⊗ δ

δη(z)
. (10)
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The term f is of degree 1 in η and 0 in η̄. Thus, the factor Pn
(1′) f is non zero only if

n = 1 and P (1′) = δ/δη(z). We find

δZ(λ)

δη̄(x)
= −iλ f Z(λ)− iλ(−i)

∫
dzv(z)(−1)

δ f

δη(z)

δZ(λ)

δη̄(z)

= −iλ f Z(λ)+ λ

∫
dyv(y)G0(x, y)

δZ(λ)

δη̄(y)
.

If we write Z(λ) = eW (λ) we get

δW (λ)

δη̄(x)
= −iλ

∫
dyG0(x, y)η(y)+ λ

∫
dyG0(x, y)v(y)

δW (λ)

δη̄(y)
,

with the solution

δW (λ)

δη̄(x)
= −iλ

∫
dyG(x, y)η(y), (11)

where G(x, y) satisfies the Dyson equation

G(x, y) = G0(x, y)+ λ

∫
dzG0(x, z)v(z)G(z, y). (12)

In other words, G(x, y) is the Green function of the Schrödinger equation obtained
by adding λv to the free Hamiltonian. From Eq. 11, we see that the function W (λ)

can be written W (λ) = −iλ
∫

dxdyη̄(x)G(x, y)η(y)+g(η, λ). The same calculation
for δZ(λ)/δη(y) shows that δW (λ)/δη(y) = iλ

∫
dx η̄(x)G(x, y). Thus, g does not

depend on η and

W (λ) = −iλ
∫

dxdyη̄(x)G(x, y)η(y)+ g(λ), (13)

where g(λ) is independent of η̄ and η.

6.3 Calculation of g(λ)

To calculate g(λ), we take the derivative of Z(λ) with respect to λ.

∂Z(λ)

∂λ
= eP

(
∂eλW 0

∂λ

)
= eP

(
W 0eλW 0

)
.

We can apply identity (9) with f = W 0, so that | f | = 0 and g = eλW 0
. We now have

PW 0 = −i
∫

dxv(x)
δ2W 0

δη(x)δη̄(x)
= −

∫
v(x)G0(x, x)dx = −tr(vG0).
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Thus eP f = f − tr(vG0) and since eP g = Z(λ), Eq. 9 becomes

∂Z(λ)

∂λ
= W 0 Z(λ)− tr(vG0)Z(λ)+

∞∑
n=1

1

n!
∑(

Pn
(1′)W

0
) (

Pn
(2′)Z(λ)

)
.

To calculate the term n = 1, we use the reduced coproduct of P given in Eq. 10 and
we obtain

∑ (
P (1′)W

0
) (

P (2′)Z(λ)
) = −i

∫
dzv(z)

δW 0

δη(z)

δZ(λ)

δη̄(z)
+ i

∫
dzv(z)

δW 0

δη̄(z)

δZ(λ)

δη(z)

=
∫

dxdyη̄(x)G0(x, y)v(y)
δZ(λ)

δη̄(y)

+
∫

dxdyv(x)G0(x, y)η(y)
δZ(λ)

δη(x)
.

For the term n = 2 we first evaluate, using algebra morphism (8)

(�P)2 =
(

−i
∫

dxv(x)
δ

δη(x)
⊗ δ

δη̄(x)
+ i

∫
dxv(x)

δ

δη̄(x)
⊗ δ

δη(x)

)

(
−i

∫
dyv(y)

δ

δη(y)
⊗ δ

δη̄(y)
+ i

∫
dyv(y)

δ

δη̄(y)
⊗ δ

δη(y)

)

=
∫

dxdyv(x)v(y)
δ2

δη(x)δη(y)
⊗ δ2

δη̄(x)δη̄(y)

−
∫

dxdyv(x)v(y)
δ2

δη(x)δη̄(y)
⊗ δ2

δη̄(x)δη(y)

−
∫

dxdyv(x)v(y)
δ2

δη̄(x)δη(y)
⊗ δ2

δη(x)δη̄(y)

+
∫

dxdyv(x)v(y)
δ2

δη̄(x)δη̄(y)
⊗ δ2

δη(x)δη(y)
.

W 0 contains one η and one η̄. Thus, the only terms of (�P)2 that give non-zero
contributions are the second and the third, because the left hand side of the tensor
product contains functional derivatives with respect to η and η̄. If we interchange the
variables x and y, we see that these two terms are identical, thus the term n = 2
becomes

1

2

∑ (
P2
(1′)W

0
) (

P2
(2′)Z(λ)

)
= −

∫
dxdyv(x)v(y)

δ2W 0

δη(y)δη̄(x)

δ2 Z(λ)

δη̄(y)δη(x)

= i
∫

dxdyv(x)v(y)G0(x, y)
δ2 Z(λ)

δη̄(y)δη(x)
.

There is no term for n > 2 because W 0 is of degree 2.
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This gives us the equation for Z(λ)

∂Z(λ)

∂λ
= W 0 Z(λ)− tr(vG0)Z(λ)+

∫
dxdyη̄(x)G0(x, y)v(y)

δZ(λ)

δη̄(y)

+
∫

dxdyv(x)G0(x, y)η(y)
δZ(λ)

δη(x)

+ i
∫

dxdyv(x)v(y)G0(x, y)
δ2 Z(λ)

δη̄(y)δη(x)
.

If we write Z(λ) = eW (λ) we obtain the equation for W (λ)

∂W (λ)

∂λ
= −i

∫
η̄(x)G0(x, y)η(y)dxdy − tr(vG0)

+
∫

dxdyη̄(x)G0(x, y)v(y)
δW (λ)

δη̄(y)

+
∫

dxdyv(x)G0(x, y)η(y)
δW (λ)

δη(x)

+ i
∫

dxdyv(x)v(y)G0(x, y)
δW (λ)

δη̄(y)

δW (λ)

δη(x)

+ i
∫

dxdyv(x)v(y)G0(x, y)
δ2W (λ)

δη̄(y)δη(x)
.

The general form of W (λ) is given by Eq. 13. If we introduce it into the last equation
we obtain

−i η̄Gη − iλη̄
∂G

∂λ
η + g′(λ) = −i η̄G0η − tr(vG0)− iλη̄G0vGη − iλη̄GvG0η

−iλ2η̄GvG0vGη − λtr(vG0vG).

This gives us two independent equations:

G + λ
∂G

∂λ
= G0 + λG0vG + λGvG0 + λ2GvG0vG,

g′(λ) = −tr(vG0)− λtr(vG0vG).

Equation (12) enables us to simplify this into

G + λ
∂G

∂λ
= G + λGvG,

g′(λ) = −tr(vG).

The first equation is an identity because the Dyson Eq. 12 yields

∂G

∂λ
= G0vG + λG0v

∂G

∂λ
,
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so that

∂G

∂λ
= GvG.

The last equation to solve is simply g′(λ) = −tr(vG) = −i
∫
v(x)ρ(x; λ)dx , where

ρ(x; λ) = −iG(x, x) is the charge density in the presence of the potential λv. The
solution of this equation would be g(λ) − g(0) = ∫ λ

0 g′(µ)dµ. If λ = 0, Z(0) =
eP 1 = 1. Thus, W (0) = 0. Moreover, for λ = 0, G = G0 and W = g(0). Thus,
g(0) = 0. Now we prove that

g(λ) = −tr (log(1 + λvG)) . (14)

By definition, the right hand side of this equation is

−tr (log(1 + λvG)) =
∞∑

n=1

(−λ)n
n

tr
(
(vG)n

)
.

If we take the derivative with respect to λ we find

−∂tr (log(1 + λvG))

∂λ
= −

∞∑
n=1

(−λ)n−1tr
(
(vG)n

) +
∞∑

n=1

(−λ)n tr

(
v
∂G

∂λ
(vG)n−1

)

= −
∞∑

n=0

(−λ)n tr
(
(vG)n+1

)
+

∞∑
n=1

(−λ)n tr
(
(vG)n+1

)

= −tr(vG).

Therefore, g(λ) and −tr (log(1 + λvG)) satisfy the same first order differential equa-
tion. Moreover, the boundary conditions are the same because −tr (log(1)) = 0 =
g(0).

6.4 Alternative expressions

We can give alternative expressions for g(λ). Expanding G = G0 +λG0vG we obtain
G = G0 ∑∞

n=0(λvG0)n so that

g′(λ) = −tr(vG) = −
∞∑

n=0

λn tr
(
(vG0)n+1

)
.

Hence,

g(λ) =
∫ λ

0
g′(µ)dµ = −

∞∑
n=0

λn+1

n + 1
tr

(
(vG0)n+1

)
= tr log(1 − λvG0).
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A similar result was obtained by Sham [18] in the framework of the density functional
theory. The relation with Eq. 14 is obtained from G = G0 + λGvG0, so that vG0 =
vG(1 − λvG0). Therefore, formally,

tr log(1 − λvG0) = tr log(vG0)− tr log(vG)= tr log(vG0)− tr log(vG0(1 + λvG))

= −tr log(1 + λvG).

We can manipulate these operators as if they were scalars because vG is a function of
vG0, so that every term is a series in the single variable vG0.

To give a last form of g(λ), we define the Euler operator A = ∫
dxv(x) δ

δv(x) ,
that counts the number of times v is present in an expression. In other words, it is
easy to check that Atr

(
(vG0)n

) = ntr
(
(vG0)n

)
. More generally, Ak tr

(
(vG0)n

) =
nk tr

(
(vG0)n

)
. Thus, we can write the somewhat formal identity

g(λ) =−
∞∑

n=0

λn+1

n + 1
tr

(
(vG0)n+1

)
=−A−1

∞∑
n=0

λn+1tr
(
(vG0)n+1

)
=−λA−1tr(vG).

7 Conclusion

The hierarchy of Green functions is one of the building blocks of an extension of the
Bethe-Salpeter equation to open shells. The other main ingredient is an expression
of the Green functions in terms of 2-particle-irreducible generating functions. This
expression is well known for closed shells [19] but not for open shells. In the latter
case, the Dyson equation relating the two-point Green function and the self-energy
(i.e. one-particle irreducible Green function) is not valid. This is a bad news because the
Dyson equation is required to use the Legendre transformation relating the connected
Green function and the one- or two-particle irreducible ones. By a diagrammatic tour
de force, Hall was able to obtain the equation corresponding to the Dyson equation for
open shells [11]. It looks very complex but, by doubling the size of the Green functions,
it is possible to give it a form similar to the traditional Dyson equation. This gives
some hope that the Bethe-Salpeter equation for open shells can be obtained, opening
the way to an effective unification of the ligand field and Green function methods.

In some applications, the operator P in eP belongs to a noncommutative algebra
[20]. This is the case for example when P is a differential operator with non-constant
coefficients. It is possible to generalize our main identity to noncommutative algebras.
The main problem is to transform e�P into an operator eA acting on 1 ⊗ eP . In other
words, we have to solve the equation eA = e�P e−1⊗P . This can be done by using the
Baker-Campbell-Hausdorff formula [21].
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derivations. I thank Alessandra Frabetti and Kurusch Ebrahimi-Fard for lively discussions on the extension
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